

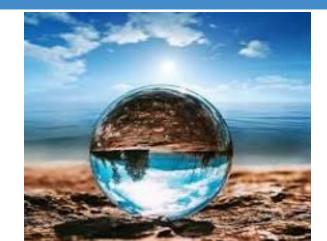
ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Dipartimento di scienze e tecnologie Agro-Alimentari

Innovation drivers in agri-food system technological transition

Mercedes SANCHEZ

Public University of Navarra, Pampona (Spain)

SIDEA-Congress Bologna, 16 September 2021


Overview

Innovation Drivers <u>CONTEXT</u> (Rural; Crisis)

Innovation Drivers-<u>FUTURE</u>-DIGITALIZATION-ECO-INNOVATIONS Innovation Drivers <u>COMPANY</u> (internal and external resources; human capital); OI

What have we learned?

How could be the future (some considerations)?

What have we learned?. Basic assumptions (Finco et al., 2018)

Innovation is a central drive of <u>economic</u> growth and productivity The capacity to innovate is a <u>strategic</u> tool (global markets) Agri food sector EU (economic output and Employment)

What is innovation?

new feeding systems, new types of packaging, new types of conservation, new additives, new consumer products Horizon 2020 and new Common Agricultural Policy (CAP) <u>emphasize</u> the role of innovation. European Innovation Partnership (EIP), Operational Groups (OGs) and different technological clusters What have we learned?. Basic assumptions (Finco et al., 2018)

> More than 60% of firms develop or implement innovation

The innovation is <u>not a random</u> process

Firm Size, Turnover; participation in a network (Cluster or other options OI) What have we learned?. Drivers (Fortuin et al., 2007). *International Food and Agribusiness Management Review*

Customer centricity (Market orientation) (Batterink et al., 2006, García Martínez and Briz, 2000)

Teamwork and cooperation

Organizational communication (coordination and integration R&D, marketing activities and know how) Costa and Jongen (2006)

Open Innovation: absorb and utilize knowledge from outside the company (suppliers and buyers or even in some cases with competitors) (Chesbrough (2003)

Innovation Outputs types (Technological and Sales)

INCREMENTAL INNOVATION

RADICAL INNOVATION

Product innovation

Significant improvements in technical specifications, components and materials, software in the product, user friendliness or other functional characteristics" (OECD, 2018).

Process innovation

A new or significantly improved production or delivery method. This includes significant changes in techniques, equipment and/or software" (OECD,2018).

Organizational innovation

A new organisational method in business practices, workplace organisation or external relations (OECD, 2018)".

04

02

03

Marketing innovation

A new marketing method involving significant changes in product design and packaging, product placement, product promotion or pricing" (2018).

What have we learned?. Drivers (Fearne et al., 2013). *Management Decision* and (García Álvarez-Coque et al., 2014), *New Medit*

Capacity of <u>rural and urban</u> spaces to promote innovation in the agrofood firms

2,000 firms based in the Valencia region, Spain.

Identify location of the firm. Local Labour Systems (LLS- OECD)

The location doesn't appear relevant concerning innovation

Primary sector less innovative, but Co-op businesses appear to be more innovative

What have we learned?. Drivers (Fearne et al., 2013). *Management Decision*

How to measure innovation: R&D Intensity; <u>Community</u> <u>Innovation Survey</u> based on the Oslo manual for OECD countries

Low intensity of direct innovation both in the primary sector and the food industry in relation to other sectors

EU rural development policies in favour of promoting the economic diversification of rural areas (effectiviness)

What have we learned?. Drivers (García Álvarez-Coque et al., 2015). *Agribusiness*

A database of over 2,700 agri-food businesses in the region of Valencia, Spain was used to test the influence of <u>internal</u> <u>characteristics of the firm and of external characteristics</u> linked to local systems on the <u>willingness to participate in R&D</u> activities promoted by knowledge supporting institutions

Results show that R&D activities are enhanced in <u>medium and large</u> <u>firms, coops, experienced firms and better physical access</u> to technological centers. What have we learned?. Drivers (Alarcón and Sánchez, 2013). *Journal of Agricultural Economics*

We examine the effects of external and internal *expenditure on research and development on the business performance of industrial agri-food enterprises*. Filippaios *et al.,* (2009); Noronha *et al.,* (2006)

The econometric analysis uses <u>quantile regressions</u>. Survey of Business Strategies

The positive effects of external R&D on <u>business performance</u>. Internal R&D was also revealed to be an important way of enhancing the <u>productivity of SMEs</u>.

The <u>modernisation</u> of the production process continues to be the main path to improve competitiveness

There is not a inverse relationship

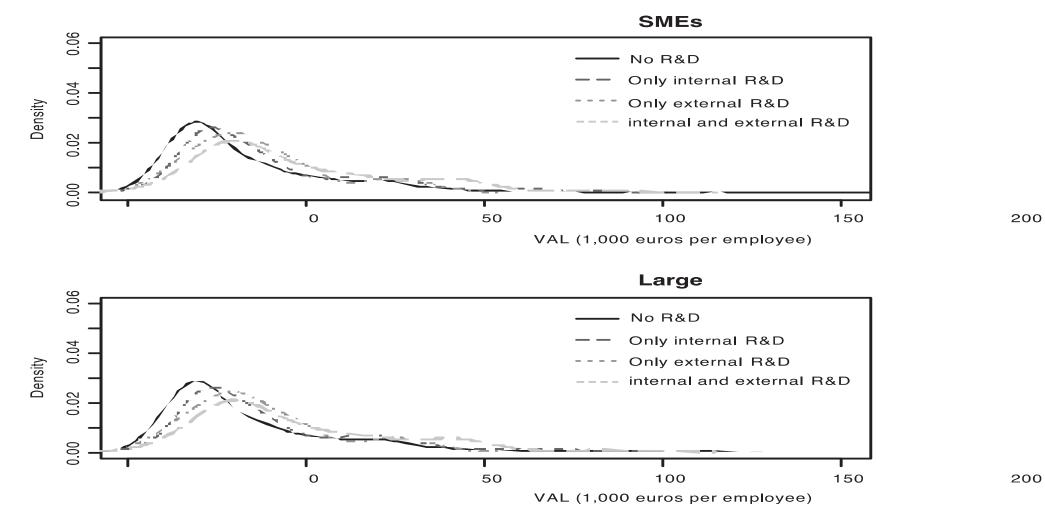
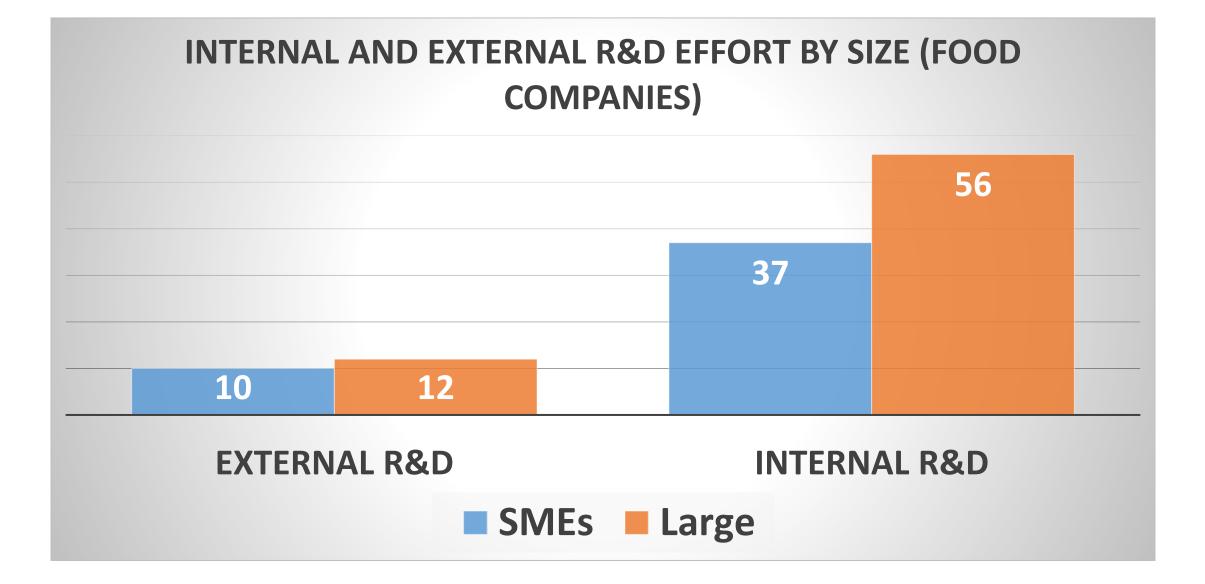
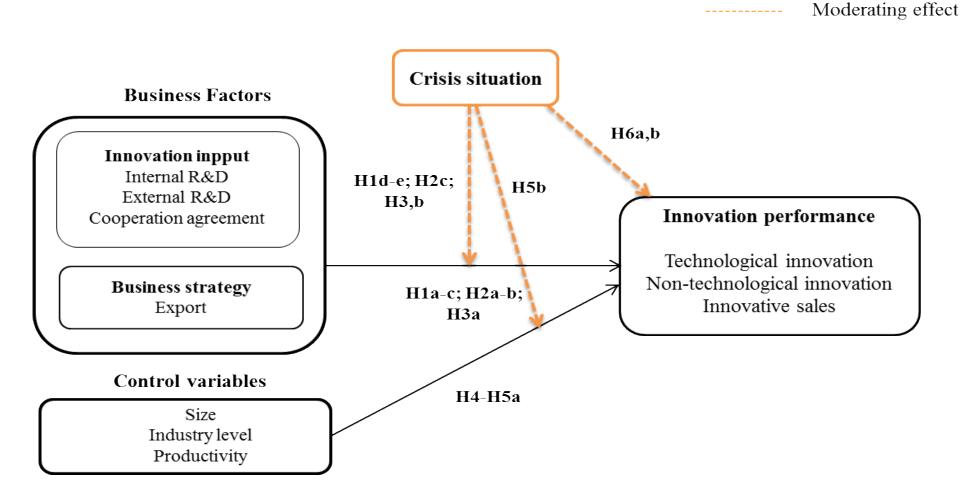
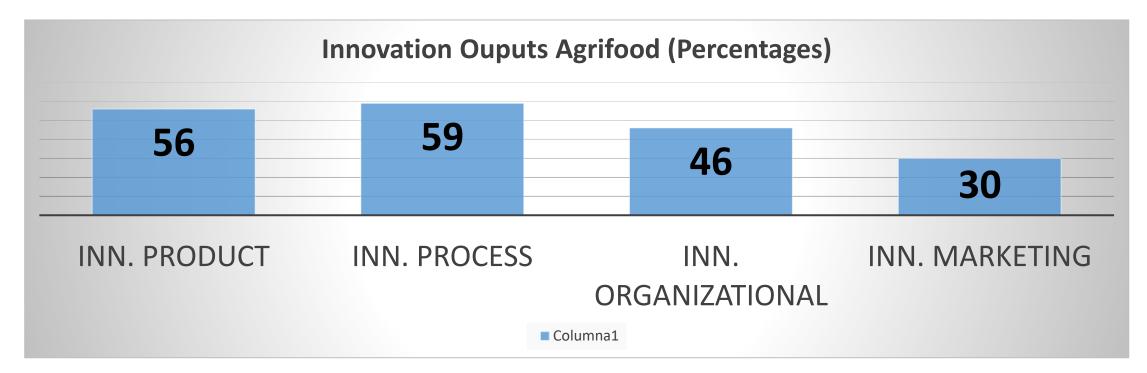
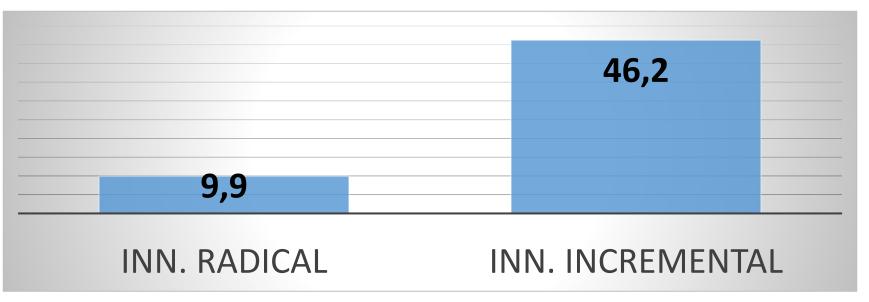



Figure 1. Kernel densities of VAL productivity ratios


What have we learned?. Drivers (Zouaghi and Sánchez, 2016). *Trends in Food Science and Technology*

Innovating in <u>times of crisis</u> is seen by many authors <u>as an opportunity to</u> <u>growth</u>, survive and succeed and as the attempt to maintain or develop competitiveness in today's global markets


This study focuses on analyzing the overall effects of an economic crisis, both in terms of <u>innovation inputs</u> and <u>innovation performance</u>


Food firms are mainly <u>process-innovation</u> oriented (Batterink et al., 2006) and both product and process innovation are to a large extent characterized by <u>incremental rather than radical changes</u> (Bayona et al., 2013; Fortuin & Omta, 2009; Hervas-Oliver et al., 2014).

Conceptual framework built on the basis of the <u>Resource-Based View (RBV)</u> and <u>Dynamic Capabilities</u> Theory

 The econometric models used are <u>random effects</u> logit model and randomeffects Tobit models (CIS Database)

	Technological innovations				Non-technological innovations			
	Product innovation		Process innovation		Organizational innovation		Marketing innovation	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ontinuous_Internal R&D1-1	2.598***	2.578***	1.290***	1.266***	1.241***	1.229***	1.377***	1.363***
_	(0.057)	(0.057)	(0.052)	(0.052)	(0.053)	(0.053)	(0.059)	(0.059)
ccasional_Internal R&Dt-1	1.739***	1.733***	1.194***	1.174***	0.831***	0.810***	0.874***	0.856***
	(0.065)	(0.065)	(0.063)	(0.064)	(0.063)	(0.064)	(0.070)	(0.070)
External R&D_Natt-1	0.252***	0.250***	0.361***	0.352***	0.264***	0.259***	0.198***	0.198***
	(0.054)	(0.054)	(0.051)	(0.051)	(0.050)	(0.050)	(0.052)	(0.053)
External R&D_Intert-1	0.819***	0.829***	0.857***	0.864***	0.675***	0.674***	0.282	0.288
	(0.202)	(0.203)	(0.193)	(0.193)	(0.184)	(0.184)	(0.189)	(0.190)
COOP_Ind_NAT _{t-1}	0.541***	0.549***	0.568***	0.577***	0.438***	0.443***	0.262***	0.259***
	(0.062)	(0.062)	(0.059)	(0.059)	(0.058)	(0.058)	(0.062)	(0.062)
COOP_Instit_NAT _{t-1}	0.511***	0.495***	0.342***	0.328***	0.230***	0.223***	0.135**	0.138**
	(0.064)	(0.064)	(0.060)	(0.061)	(0.060)	(0.060)	(0.064)	(0.064)
			0.000					0.100
OOP_Ind_INTER _{t-1}	0.426***	0.424***	0.288***	0.294***	0.297***	0.294***	0.186**	0.183**
	(0.092)	(0.093)	(0.086)	(0.087)	(0.082)	(0.082)	(0.083)	(0.083)
COOP_Instit_INTER _{t-1}	0.124	0.120	0.113	0.149	0.315**	0.317**	0.209*	0.199*
	(0.126)	(0.126)	(0.118)	(0.120)	(0.113)	(0.113)	(0.112)	(0.112)
SIZE _{t-1}	0.074***	0.067***	0.461***	0.458***	0.441***	0.445***	0.132***	0.132***
	(0.018)	(0.018)	(0.018)	(0.018)	(0.019)	(0.019)	(0.021)	(0.021)
xport _{t-1}	0.463***	0.477***	-0.063	-0.047	0.057	0.067	0.273***	0.277***
	(0.049)	(0.050)	(0.046)	(0.046)	(0.048)	(0.048)	(0.052)	(0.052)
Productivity _{t-1}	0.139***	0.140***	0.156***	0.158***	0.065**	0.067**	0.077**	0.079**
	(0.026)	(0.026)	(0.025)	(0.025)	(0.026)	(0.026)	(0.030)	(0.030)
OOD_SEC	-0.235*	-0.239*	0.664***	0.676***	0.019	0.013	1.010***	1.007***
	(0.123)	(0.124)	(0.116)	(0.117)	(0.124)	(0.124)	(0.137)	(0.137)
	()	(*****)	()	(01-1-1)			()	(0.000)
GRI_SEC	-1.067***	-1.0715***	0.484*	0.508**	-0.821**	-0.829**	-0.733**	-0.769**
	(0.265)	(0.267)	(0.254)	(0.257)	(0.283)	(0.285)	(0.325)	(0.328)
D_2010-2012	-0.753***	-0.789***	-0.721***	-0.737***	-0.355***	-0.369***	-0.038	-0.061
	(0.032)	(0.036)	(0.030)	(0.033)	(0.030)	(0.033)	(0.032)	(0.037)

Interactions terms

What have we learned?. Drivers (Alarcón y Sánchez, 2016). *Food Policy*

This study examines the existence of an interrelationship between innovation decisions and exports for food and agricultural firms as such a relationship could be the source of competitive advantages.

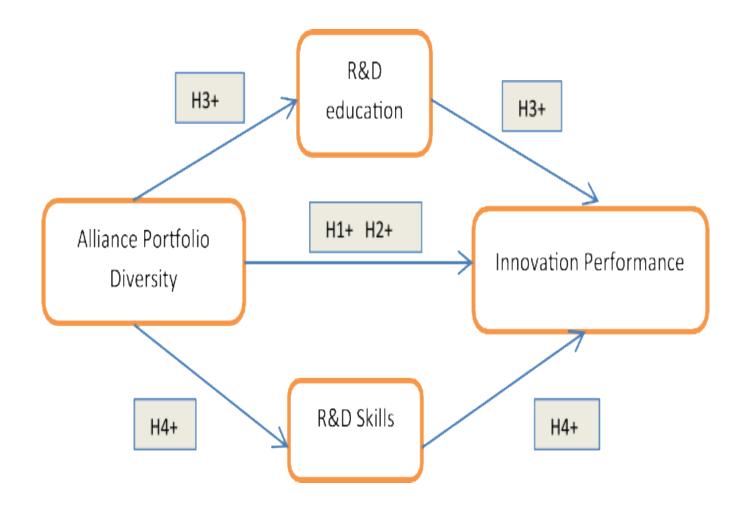
We analysed 165 agricultural firms and 783 food companies operating in Spain (Europe) (2006-2011).

The results of the bivariate probit and matching models used indicate a bi- directional nature of these decisions in the case of food companies and a positive though not bidirectional one in the case of the agricultural firms.

Furthermore, a certain <u>persistence</u> is seen in the use of these decisions in both types of firms.

For food companies, capital intensity and size are also determinants of innovation and exports.

What have we learned?. Drivers (García et al., 2017). *Technovation*


Research has demonstrated the value of <u>external linkages</u> to augment <u>in-house R&D efforts</u>.

This paper examines the value of <u>Alliance Portfolio</u> <u>Diversity (APD)</u> and whether R&D human capital is the pathway through which alliance portfolio diversity influences innovation novelty. We reason that the absorptive capacity of R&D human capital determines a firm's potential gains from highly diverse alliance portfolios. (Spanish Technological Innovation Panel 2005-2012)

What have we learned?. Drivers (García et al., 2017). *Technovation*.

The results support the <u>curvilinear (inverted U-shaped</u>) association between alliance portfolio diversity and firm innovation performance reported in studies, suggesting that not only too little, but also too much alliance portfolio diversity may be detrimental to firm innovation performance.

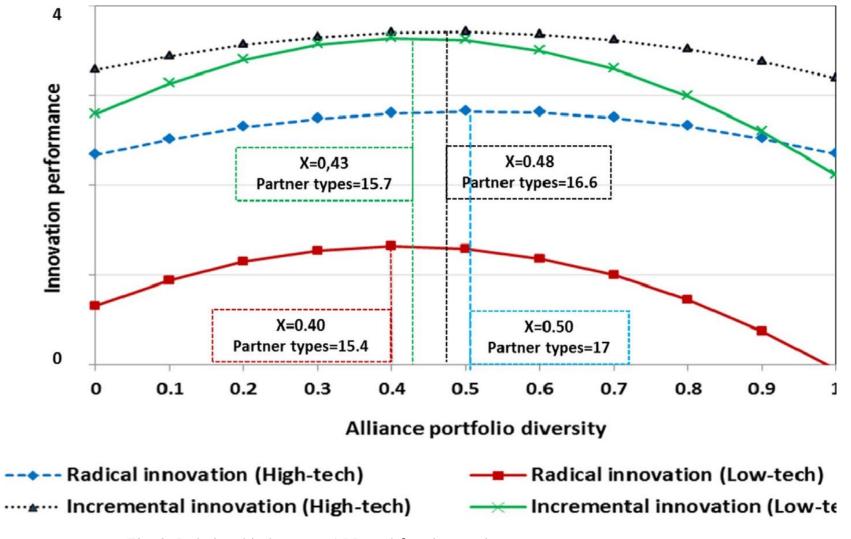
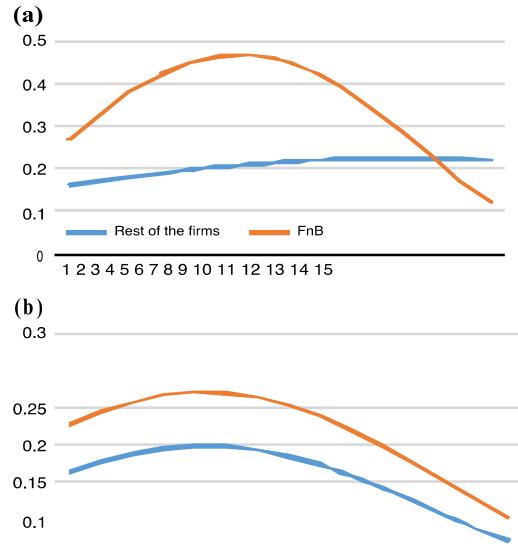
Further, we find evidence that <u>R&D human capital plays</u> an important role in innovation novelty by partially <u>mediating</u> the relationship between alliance partner diversity and firm innovation performance

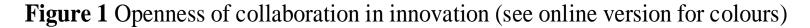
What have we learned?. Drivers (García et al., 2017). *Technovation*

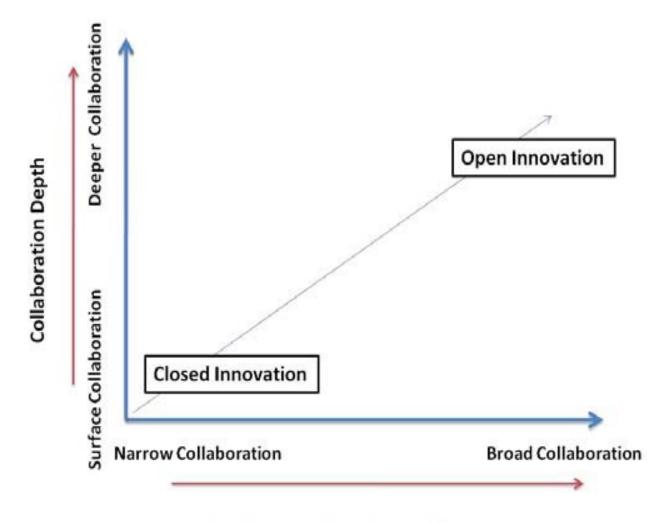
However, significant differences are found in the optimal level

of APD <u>depending on the industry's technological</u> <u>intensity (high vs low)</u> and the novelty of innovations (radical vs incremental).

Our findings indicate that high-tech industries, characterised by rapid technological changes, require a broader set of external partners to maximise radical innovation performance <u>than low-tech industries</u>.


Fig. 2. Relationship between APD and firm innovation performance – Industry Differences.


What have we learned?. Drivers (Bayona et al., 2017). *Management Decision*

The authors test and confirm the presence of the <u>classical inverted U-shaped relationship between OI and firm innovative performance</u> for **FnB** and non-FnB companies. However, the <u>optimal number of external</u> sources of knowledge used <u>is lesser for FnB</u> than the rest of the companies.

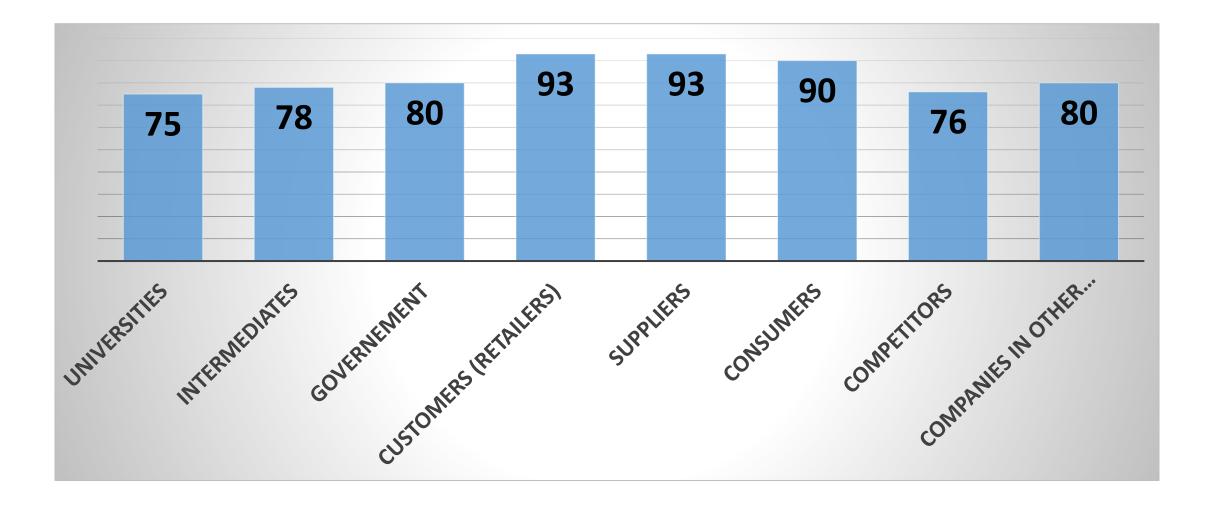
In this sense, our estimates highlighted the crucial role of <u>absorptive</u> <u>capacity</u> in order to increase innovation performance • Notes: (a) Breadth and process innovation; (b) Depth and process innovations

Collaboration Breadth – OI Ecosystem

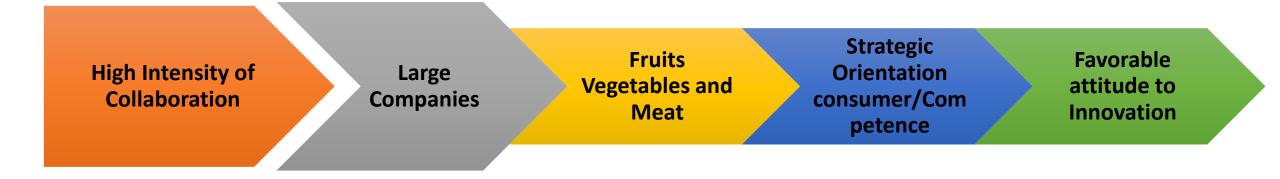
What have we learned?. Drivers (García et al.. 2014). *International Journal of Technology Management*

The study clusters food and drink companies in terms of <u>their degree of</u> <u>openness</u> measured across two dimensions, namely, collaboration **breadth** (broad to narrow collaboration ecosystem) and collaboration **depth** (deeper to surface collaboration).

Findings show that food and drink companies can be clustered into **three open innovation modes** in terms of their search strategy for external knowledge ranging from limited collaboration with traditional partners to a broad and deep openness approach with a wide spectrum of external sources.. What have we learned?. Drivers (García et al., 2014). *International Journal of Technology Management*


The data for the study was gathered through a large <u>online survey</u> sent to <u>senior R&D</u> and innovation managers of f&d companies in the UK, Spain and Italy.

F&D companies engaged in external collaboration in innovation' which amounts to <u>71% of the</u> respondents (284 firms). Valid responses per country were 108 for the UK, 92 for Spain and 84 for Italy.

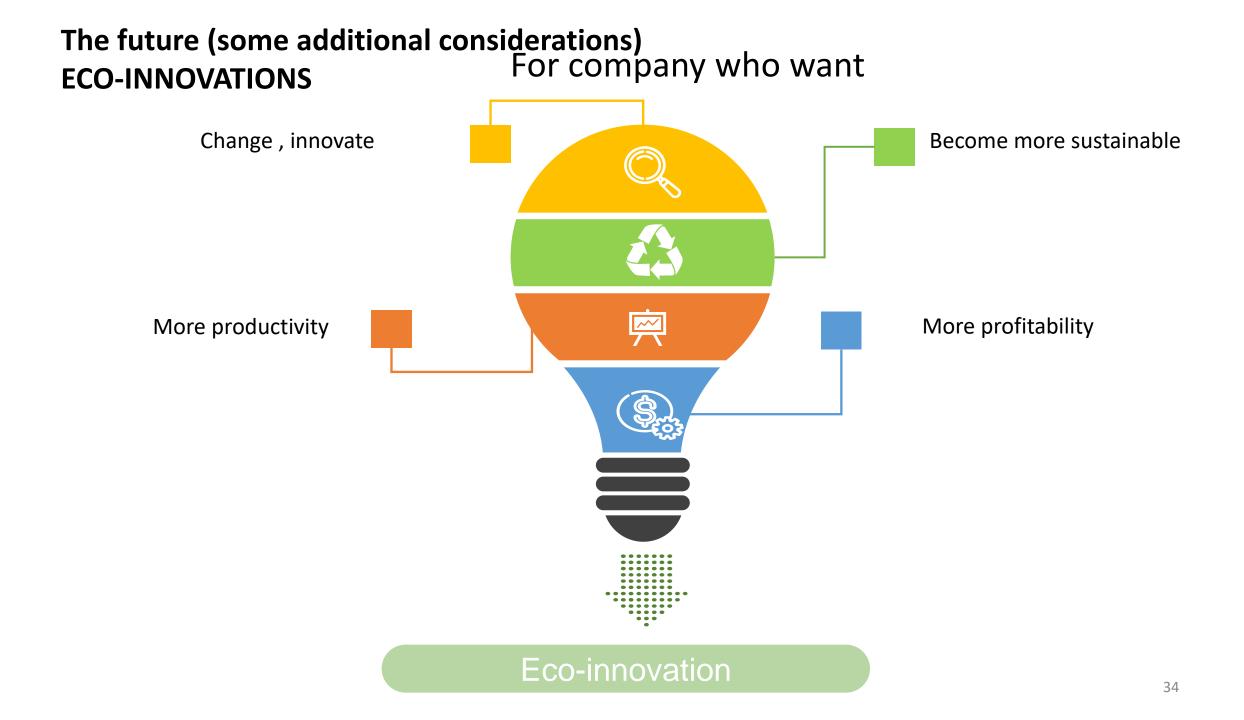

Technology pressures emerge as a key driver for greater openness.

However, it requires a dedicated <u>architecture</u> for collaboration to access and leverage external knowledge.

External sources of knowledge and technology in the f&d industry

Cluster 1. TRUE OPEN INNOVATION (45%)

Cluster 2. The SELECTIVE COLABORATOR (41%)

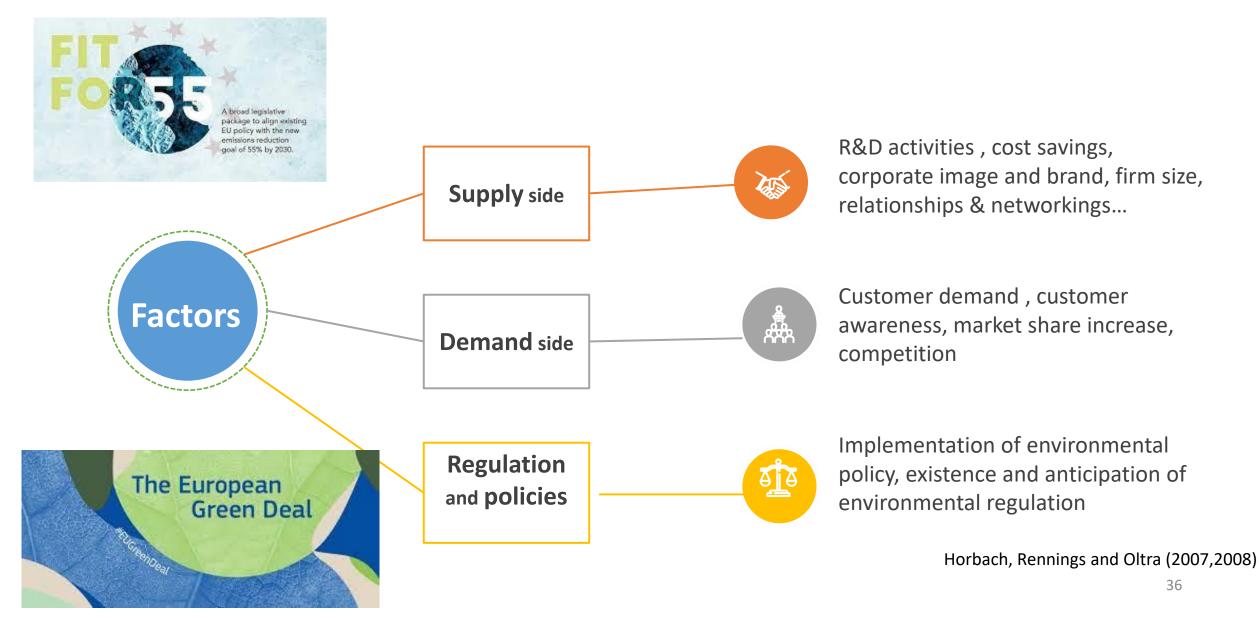


Cluster 3. The INCIPIENT COLABORATOR (14%)

Reasons to Collaborate (Innovation)

Eco-innovation?

Concepts


Concept

Eco-innovation consists as an innovation which benefits the environment and contributes to environmental sustainability (Rennings,2000)

Concept

New or significantly improved product achieved in sustainable production taking into the account product lifecycle, that reduces the use of natural resources (including materials, energy, water, biomass and land) and decreases the release of harmful substances across the whole lifecycle. (Eco-innovation observatory,2010)

Drivers of Environmental Innovation

The future (some additional considerations) ECO-INNOVATIONS. Khouloud and Sánchez, 2021

2. Independent variables: Technological push factors

Importance of internal RD of effort Importance of internal information sources Increasing awareness of the
 <u>cooperation</u> importance to implement ecoinnovation

Technological push factors

	All sectors	Agrifood sector	Dirty sector	Clean sector
External R&D	0,1139	0,0753	0,0220	0,0011
Internal R&D	0,4438	0,2998	0,4318	0,0569
R&D cooperation	0,0321	0,0535	0,1323	0,1877
Internal source of information	1,091	1,0855	1,166	0,271

Crucial role of the technology push factors

Crucial role of the technology push factors except the external R&D services

Crucial role of the technology push factors

All of the variables indicating the technological push are significant

Market pull factors

	All sectors	Agrifood sector	Dirty sector	Clean sector
Increase market share	0,9376	1,0502	1,1532	0,6542
Penetration new markets	0,9565	0,9197	0,9108	0,497

Eco-innovation introduction is highly driven by the market pull factors which prove the importance of commercial orientation of Spanish companies

Regulation influences

	All sectors	Agrifood sector	Dirty sector	Clean sector
Public subsidies	0,1351	0,21565	0,1130	0,055
Regulation	0,6993	0,6774	O,6842	-0,1616

- Importance pertaining to the regulation dimension to employ eco-innovation by dirty and agri-food sector
- Almost the unique subsidies that have a significant effect on the introduction of eco-innovation is National/Public subsidies

 Negative coefficient is shown for the clean industry
 → this category of firms do not need to fulfill regulation factor as its business activities have less damage on environment The future (some additional considerations) DIGITALIZATION. Verhoef et al., (2021). *Journal of Business Research*

Digital Transformation altered <u>consumer expectations</u> and <u>disrupting</u> numerous markets

Three stages of digital transformation: <u>digitization, digitalization, and</u> <u>digital transformation</u>

Specific <u>organizational structure and new metris to calibrate performance</u>

New online retailers employ digital resources to increase the potential market (disruptive)

The future (some additional considerations) DIGITAL TRANSFORMATION.

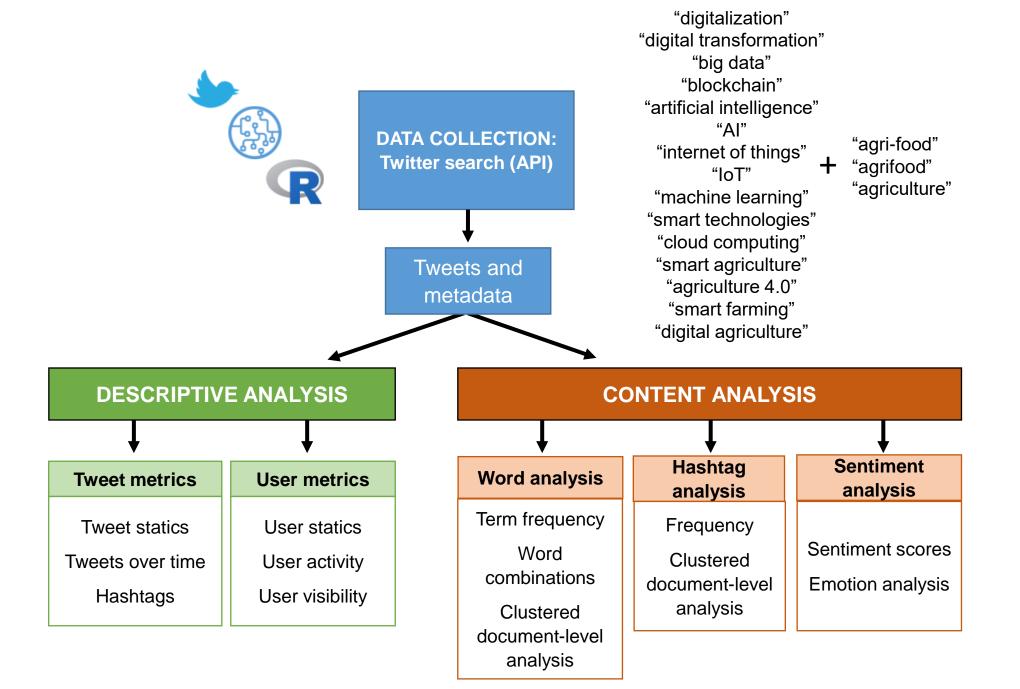
Cannas, et al., (2021), Journal of Small Business Management

The study of Digital Transformation through <u>Dynamics</u> <u>Capabilities</u> (firms capabilities) (Resource-based view (RBV))

DT is defined "as the use of new digital technologies (social media, mobile, analytics or embedded devices) to enable major business improvements (such as enhancing customer experience, streamlining operations or creating new business models)" (Fitzgerald et al., 2014,

DT has become a <u>strategic</u> imperative for leadership agendas (Fitzgerald et al., <u>2014</u>; Hess et al., <u>2016</u>; Singh & Hess, <u>2017</u>)

179th EAAE SEMINAR


September 9th, 2021. Chania, Crete, Greece

Twitter as indicator of new trends in the digital transformation process of the agri-food sector

<u>María Ancín</u>, Emilio Pindado & Mercedes Sanchez Public University of Navarre – Spain

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

CONTENT ANALYSIS

Word analysis

in clustered documents by country

USA

India

UK

Nigeria

Word	Freq	%		Word	Freq	%		V	Vord	Freq	%			Word F	req	%	
agriculture	2983	57,9		agriculture	1719	66,9		a	griculture	1253	63,9			agriculture	865	85,4	
ai	1135	22,0		smart	596	23,2		d	igital	375	19,1			digital	485	47,9	
smart	1023	19,9		digital	522	20,3		а	rtificial	315	16,1			smart	423	41,8	
digital	891	17,3		ai	489	19,0		s	mart	338	17,2			farmers	140	13,8	
market	628	12,2		farmers	324	12,6		in	ntelligence	314	16,0			nigeria	103	10,2	
climate	423	8,2		india	286	11,1		a	i	202	10,3			village	112	11,1	
data	413	8,0		technology	240	9,3		ic	ot	188	9,6			navsa	100	9,9	
food	432	8,4		iot	211	8,2		d	ata	142	7,2			climate	82	8,1	
intelligence	431	8,4		farming	209	8,1		fa	arming	179	9,1			food	84	8,3	
artificial	413	8,0		data	162	6,3		n	nanagement	158	8,1			technology	81	8,0	
ords (2)		Freq	%	Words (2)	F	req	۷ %	Words	s (2)	Fre	q	%	Words	s (2)		Freq	9
nart agriculture	;	414	8,0	smart agriculture		164 6	5,4 a	artificia	al intelligence	; 31	0 15	,81	smart	agriculture		320	31,
tificial intelligen	ice	410	8,0	digital agriculture		93 3	3,6	smart	agriculture	13	85 6	,88	digital	agriculture		230	22,
riculture marke	et	374	7,3	climate smart		84 3	3,3	agricu	lture market	ç	96 4	,90	adopte	ed village		109	10,
mate smart		295	5,7	agriculture sector		80 3	3,1 r	manag	gement cities	11	1 5	,66	climate	e smart		70	6,
elligence ai		259	5,0	artificial intelligend	ce	77 3	3,0 k	big da	ta	6	60 3	,06	agricul	ture navsa		61	6,
achine learning	3	200 3	3,9	supply chain		70 2	<u>2,7</u> 0	climat	e smart	8	36 4	,39	gombe	e state		52	5,
gital agriculture	;	191 3	3,7	next generation		65 2	2,5 0	digital	agriculture	7	73 3	,72	digital	economy		53	5,
ecision agricult	ture	119 2	2,3	smart farming		63 2	<u>2,5</u>	smart	managemen	it 6	64 3	,26	agricul	ture book		39	3,
g data		94	1,8	urban infrastructu	ire	64 2	2,5	data a	nalytics	2	28 1	,43	empov	verment prograr	nme	33	3,
ipply chain		94	1,8	precision agricult	ure	58 2	2,3	agricu	lture buildings	s 2	12 2	,14	honou	rable minister		33	3,

CONTENT ANALYSIS

Word analysis

in clustered documents by technology

Big data

Words (2)	Freq	%
big data	357	55,69
data analytics	51	7,96
agriculture market	40	6,24
artificial intelligence	40	6,24
the future	33	5,15
future of	24	3,74
precision agriculture	23	3,59
agriculture industry	20	3,12
platform for	20	3,12
smart farming	18	2,81

Blockchain

Words (2)	Freq	%
supply chain	182	13,78
food supply	119	9,01
blockchain technology	89	6,74
global food	77	5,83
chain market	74	5,60
food security	73	5,53
digital agriculture	73	5,53
to track	68	5,15
blockchain chicken	67	5,07
agriculture giants	62	4,69

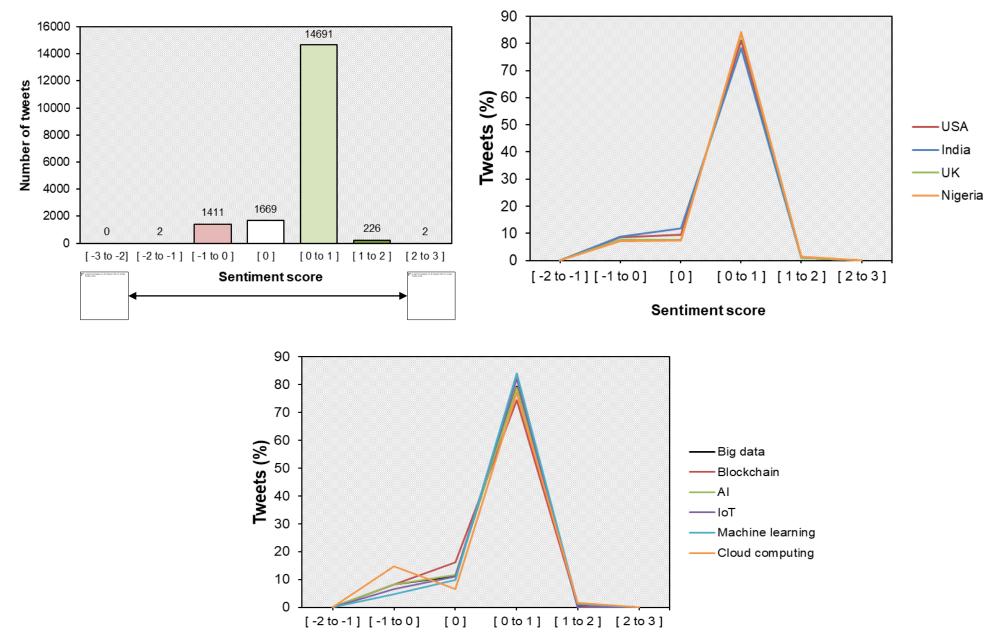
Artificial intelligence (AI)

Words (2)	Freq	%
artificial intelligence	916	22,21
agriculture market	324	7,85
can help	137	3,32
to improve	127	3,08
the future	123	2,98
machine learning	123	2,98
agriculture daily	116	2,81
future of	109	2,64
intelligence daily	108	2,62
the potential	106	2,57

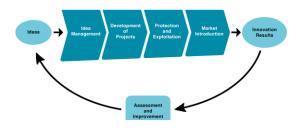
Internet of things (IoT)

Words (2)	Freq	%
smart agriculture	88	7,35
precision agriculture	88	7,35
agriculture iot	63	5,26
smart farming	61	5,09
agriculture industry	50	4,17
real time	49	4,09
in 2021	45	3,76
iot technology	46	3,84
to improve	45	3,76
agriculture market	44	3,67

Machine learning


Words (2)	Freq	%
machine learning	343	42,71
artificial intelligence	129	16,06
help to	55	6,85
agriculture stimulates	53	6,60
fresh produce	53	6,60
growth infrastructure	53	6,60
internet machine	53	6,60
need help	53	6,60
stimulates growth	53	6,60
to improve	52	6,48

Cloud computing


Words (2)	Freq	%
cloud computing	25	40,98
grand farm	7	11,48
trilogy networks	7	11,48
computing initiative	4	6,56
precision agriculture	4	6,56
rural cloud	4	6,56
smart farming	4	6,56
artificial intelligence	3	4,92
based computing	3	4,92
cloud based	3	4,92

CONTENT ANALYSIS

Sentiment analysis

At the end...some final conclusions.....

Process Innovation. Strategic (not easy)

Human Resources

<u>Company</u> (size, sector) and context (crisis, eco, digital...)

Types of innovation (technological, incremental-radical) **Agri and Food**

Internal (absorptive capacity) and **External options**

Databases, Countries (EU), **Time, Econometrical** models

Some references

- Alarcón, S., Sánchez, M. (2013). External and Internal R&D, Capital Investment and Business Performance in the Spanish Agri-Food Industry. *Journal of Agricultural Economics*, 64 (3), 654-675.
- Alarcón, S., Sánchez, M. (2016). Is there a virtuous circle relationship between innovation activities and exports? A comparison of food and agricultural firms. *Food Policy*, 61, 70-79.
- Cannas, R. (2021). Exploring digital transformation and dynamic capabilities in agrifood SMEs. *Journal of Small Business Management*, 1-27.
- Fearne et al., 2013. Fearne, A., García-Álvarez-Coque, J.M. García, T., Sánchez, M. (2013). Innovative firms and the urban/rural divide: the case of the agri-food system in the Valencia region. Management Decision, 51(6), 1293-1310.
- García, M., Zouaghi, F., Sánchez, M. (2017). Capturing Value from Alliance Portfolio Diversity: The Mediating Role of R&D Human Capital in High and Low Tech Industries. *Technovation*, 59, 55-67.
- Finco, A., Bucci, G., & Bentivoglio, D. (2018). Lessons of innovation in the agrifood sector: Drivers of innovativeness performances. Lessons of Innovation in the Agrifood Sector: Drivers of Innovativeness Performances, 181-192.
- Fortuin, F. T., Batterink, M. H., & Omta, S. W. F. (2007). Key success factors of innovation in multinational agrifood prospector companies. *International Food and Agribusiness Management Review*, 10(1030-2016-82691), 1-24
- Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. *Journal of Business Research*, 122, 889-901.
- Zouaghi, F., Sánchez, M., (2016). Has the global financial crisis had different effects on innovation
 performance in the agri-food sector by comparison to the rest of the economy? *Trends in Food Science & Technology*, 50, 230-242.

Some references

- Bayona, C., Cruz, C., García, T., Sánchez, M. (2017). "Open Innovation in the Food and Beverage Industry. *Management Decision*, 55 (3), 526-546.
- García Álvarez-Coque, J.M., Más, F., **Sánchez, M**. (2015). Determinants of agrifood firms' participation in public funded R&D. *Agribusiness*, 31 (3), 314-329.
- García Álvarez-Coque, J.M.; López-García Usach, T., Sánchez García, M. (2013). Territory and innovation behavior in agri-food: does rurality matters?. New Medit, 3, 2-10.
- Garcia-Martinez, M.; Valentina Lazzarotti; Raffaella Manzini; Sánchez García, M. (2014). Open Innovation Strategies in the Food and Drink Industry: Determinants and Impact on Innovation Performance. *International Journal of Technology Management*, 66 (2/3), 212-242.
- Kafetzopoulos, D., & Skalkos, D. (2019). An audit of innovation drivers: some empirical findings in Greek agri-food firms. *European Journal of Innovation Management*.
- Zouaghi, F., García, M. Sánchez, M. (2018). Casting a wide net for innovation: The mediating effect of R&D human and social capital to unlock the value from Alliance Portfolio Diversity. *British Journal Management*, 00-1-22.

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

Thank you very much for your kind invitation

Grazie mille per avermi invitato al vostro Congresso

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Dipartimento di scienze e tecnologie Agro-Alimentari